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Analysis of brittle fracture under the combined 
stresses of tension and compression 

A. O K A D A  
Materials Research Laboratory, Central Engineering Laboratories, Nissan Motor Co., Ltd,, 
1, Natsushima-cho, Yokosuka, Kanagawa 237, Japan 

Brittle fractures occurring under biaxial stress states were analysed based on the weakest link 
model using the mixed mode fracture criterion. Expressions for the mixed mode fracture 
criterion were chosen for application to the negative K. region, corresponding to the 
compressive stress for the crack. Calculations for biaxial strength with randomly oriented 
constant-length cracks from the mixed mode fracture criterion were made in the region of 
Kj > 0 because an unstable fracture seems to occur in this region. The results indicated that 
the tensile stress component in the combined tension and compression stress state remains 
constant when the compressive component is smaller than the critical value, which is given by 
[1 - (K,c/Kpc)2]at derived from the mixed mode fracture criterion, (Ki/Kic) + (KH/Kjlc) 2 = 1. 
Considering the statistical effects, however, calculation of the biaxial strength is modified to 
result in: (1) lowering the biaxial tensile strength, and in (2) a smooth transition from the 
constant tensile strength region to the decreasing strength region under the combined ten- 
sion and compression stress. This suggests that the high KHc/K~c ratio results in the increase in 
the compressive strength relative to the tensile strength. 

1. Introduction 
The behaviour of the multiaxial fracture of brittle 
materials can be classified into two stress state groups: 
the tensile principal stress controlled fracture and the 
compressive principal stress controlled fracture. The 
former causes fractures owing to the rapid crack 
growth when one of the stress intensity factors for the 
pre-existed cracks reaches the critical value. The frac- 
ture strength in this case is provided by using the 
mixed mode fracture criterion. In the latter case, how- 
ever, determining the theoretical fracture strength is 
complicated because the eventual fracture occurs after 
stable crack growth and the coalescing of  the extended 
cracks [1-3]. Complication also arises owing to the 
technical problem of measuring the compressive 
strength, specifically, insufficient lubrication at the 
end points of the compression specimens results in a 
higher compressive strength estimation [4-5]. 

The multiaxial fracture comprising the compressive 
stress state will need further study relative to the 
phenomenon during fracture. This is because the sim- 
ple weakest link model is difficult to apply when the 
major stress state is compressive. The application of 
the weakest link model is limited to the stress state 
where the normal stress for the crack is tensile. 

The objective of  the present study was thus to 
explore the effects of  the practical mixed mode frac- 
ture criterion on the multiaxial strength under com- 
pression and tension. 

2. Calculat ion of  multiaxial  s trength  
Griffith's equation [6] is known to account for the 
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multiaxial fracture of brittle materials under the ten- 
sile and compressive stress states. He assumed that the 
fracture occurs when the tensile stress around the 
ellipsoidal hole reaches the critical value. When the 
curvature of the hole is infinitely sharp, the biaxial 
stresses of 0"1 and 0"2 are given by [6] 

(0-1 - -  0-2) 2 -~- 80"t(0"1 -]- 0"2) = 0 for 0"2/0", < - 3  

(la) 

and 

0.1 = G f o r - 3  < 0-2/0" 1 < l (lb) 

where 0"t is a tensile strength. 
Hoek and Bieniawski [2] indicated that Griffith's 

equation can be represented using Mohr's envelope as 

r ~ = 40",(0",- 0") (2) 

where r and o are the shear stress and the normal 
stress at the fracture surface, respectively. Represen- 
tation of the biaxial strength using Mohr's envelope 
was also made by Sate [7] who proposed a new 
equation given by 

r ~ = m00" ) 1(0"  t - -  0") (3) 

where b and m0 are material-dependent constants. 
This equation is reported to provide good agreement 
with the experimental results when the value, b, is in 
the range from 2 to 3 [7, 8]. Moreover, Equation 3 
agrees with Equation 2 derived from Griffith's 
equation when m0 = 4 and b = 2. 

The fracture strength of the brittle materials can 
be explained by fracture mechanics. Provided the 
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fracture occurs under the mixed mode of KI and Kn, 
Equations 2 and 3 are rewritten by 

K,/K,c + (K,,/K.Io) ~ = 1 (4) 

where k = 2 and K~I c = 2K~c for Griffith's equation, 
and K.c = mUkK~o with k = b for Sato's equation. 

Although this mixed mode fracture criterion is dif- 
ferent from the conventional criterion such as the 
maximum energy release rate [9], the maximum normal 
stress [10], and the minimum strain energy density 
[11], Equation 4 can derive similar expressions to 
meet the conventional mixed mode fracture criterion 
by selecting the value of k and the K.c/K~o ratio. 
Furthermore, this equation is capable of producing 
expressions to meet the recent mixed mode fracture 
data [12-14]. This suggests that the apparent mode II 
fracture toughness, Kj~c, can be heightened by the 
frictional sliding of the fracture surface. 

The mixed mode fracture criterion calculated from 
the crack-tip stress field and the displacement should 
not be applied to the region of negative K~ because the 
meaning as a parameter for describing the stress field 
and the displacement near the crack-tip becomes 
obscure in the region of negative K~. However, pro- 
vided the negative KL corresponds to the compressive 
stress for the crack, namely a < 0, the negative Kx has 
meaning as a parameter for describing the fracture 
criterion. The criterion in the region of the negative K~ 
seems to be affected by the friction effect at the crack 
faces. The compressive stress decreases the effective 
K n value through the frictional force in the crack 
faces. This is because the crack-tip field and the dis- 
placement are fundamentally determined by the K.  
mode stress intensity factor. The effective shear stress 
at the crack faces, ~*, is reduced by the friction [3]: 

r* = ~ + /~o- (5) 

where ~t is a friction coefficient and the normal stress, 
a, is negative during compression. Accordingly, the 
effective mode II stress intensity factor, K~*, derived 
from z* is given by 

K,* = K,. + /~K, (6) 

Provided the brittle fracture occurs when K~* > K.c in 
the region of K~ < 0, the fracture criterion becomes 

K u + #K~ = Kn~ (7) 

Mixed mode KI I 
fracture criterion 

M ~  .J~ KII c 
o 2 

1 

I 

Note that Equation 4 in the region of negative Ki is 
approximately consistent with Equation 7 provided 
the friction coefficient, #, decreases slowly with the 
increasing compressive stress. The expression for 
Equation 4 in the region of Ki < 0, however, may be 
strictly different from Equation 7. Equation 4 could 
thus be used for the approximate estimation of biaxial 
strength instead of Equation 7 in the region ofKi < 0. 

From the mixed mode fracture criterion comprising 
the negative K~, the biaxial strength with randomly 
oriented constant-length cracks can be obtained as 
follows. Draw an inscribed circle to the mixed mode 
fracture criterion of K~ and KH (as shown in Fig. 1), 
and let the Kl values K n and K~2 (KII > KI2) represent 
the two points of the circle when Kn = 0. This circle 
is similar to Mohr's circle except for the use of the 
stress intensity factor rather than stress. This modified 
Mohr's circle is defined by 

( K [ -  K I I ) ( K , -  Kl2)-fi X 2, = 0 (8) 

The two principal stresses, al and a2 (al > o-2), are 
expressed as 

O" 1 = O't (KI  1/Klc ) ( 9 a )  

and 

a2 = a~(Kj2/K~c) (9b) 

Since the tensile strength of o- t is positive, the mag- 
nitude of the principal stresses are proportional to the 
Kjl and Kt2 values. The inclined angle, 0, for the 
extending crack is also shown in Fig. 1. The contact 
points of the envelope with Mohr's circle are rep- 
resented by the K~ and K.  values at the fracture. 

When the stress intensity factor, Kl, is positive, 
these values produce an instantaneous fracture con- 
dition free of stable crack growth. However, the 
initiation of crack extension does not always corre- 
spond to the fracture strength in the negative K~ 
because the eventual fracture occurs after stable crack 
growth, and the crack coalesces. 

Under the combined stresses of tension and com- 
pression, the fracture occurs at the constant tensile 
stress in the limited range of the applied compressive 
stress. This region is predicted to be - 3 < %~at < 1 
from Griffith's equation. However, the experimental 
results show a material dependence: - 3.5 < er=/at < 1 

~ O  1 

Figure 1 Schematic indication of the biaxial 
strength with randomly oriented constant-length 
cracks. The biaxial strength can be expressed by the 
stress intensity factors of K~ and/(12 obtained from 
an inscribed circle to the mixed mode fracture 
criterion. 
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for plaster [7], - 1 . 4  < 0"2/0 1 < 1 for nodular iron 
[8], and - 1 . 2  < 0"2/0" 1 < 1 for graphite [7]. This 
region is represented by K I * / K ] c  < 0-2/0"1 < 1, where 
K~* is a Kj2 value when the maximum Mohr's circle 
coincides internally with the mixed mode fracture 
criterion at the point of K, = K~c. The biaxial strength 
can be calculated schematically from the arbitrary 
mixed mode fracture criterion. 

Using the requirement of Mohr's circle coinciding 
internally with the mixed mode fracture criterion, the 
relationship between Nil and K,2 is obtained by 
combining Equations 4 and 8. When k = 2, it can be 
solved to obtain 

K,2 = K u  - K2~c/K,c - 2K,,c(I  - K , , / K , c )  '/2 

(]0) 

When / ( l l  equals to K~o, Equation 10 gives 

K , 2 / K , c  = 1 - -  ( K , , ~ / K ~ c )  2 (11) 

Accordingly, the region of the constant tensile stress 
component at the fracture under the combined tension 
and compression stress is given by 

[1 - (Kuc/K,c)2]0-~  < 0"2 < 0"t (12) 

This equation indicates that the constant tensile stress 

region appears when KHo >Kic ,  and that it spreads 
extensively with an increasing K u c / K ~ c  ratio. 

Figure 2 shows examples of calculated results of 
multiaxial fractures from the criterion derived by 
Equation 4 for k = 2 with K u c / K ~ c  ratios of 1.0, 1.5, 
and 2.0. The K~ component at the fracture is obtained 
by combining Equations 4, 8 and 10, using the require- 
ment of Mohr's circle coinciding internally with the 
mixed mode fracture criterion: 

K, = K,2 4- Kuc(1 - K , 2 / K ~ c )  1'2 (13) 

The solid line in Fig. 2 shows the region of positive/(i, 
and the broken line shows the negative K~ region. The 
point at K~ = 0 appears in the area of decreasing 
tensile strength under the combined tension and com- 
pression stress. The biaxial fracture stresses at K~ = 0 
are calculated from Equation 13 as 

al  = - ( 1 / 2 ) ( K u c / K j c ) 2 { l  - [l + 4 ( K j c / K H c ) 2 ] I / 2 } G t ,  

(14a) 

and 

a2 = - ( I / 2 ) ( K , , o / K ] ~ ) 2 { 1  + [1 + 4(KIc//KIIc)2]I"2}Gt, 

(14b) 

(a)  (b) 
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Figure 2 The biaxial strength 
with randomly oriented constant-  
length cracks calculated from the 
mixed mode fracture criterion 
( K I / K ~ )  + (K i j /K~ l~ )  2 = 1; 
(a) K[[~/K[~ = 1~ (b) Knc/K k = 
[.5. and (c) Kuc/K[c = 2. 

1 3 2 7  



ff 
\ O.S 

ff 

20 

\ lO 

I 

+ I 0 0 
1 2 3 

0 (a} KIIclKIc (b) 

~ + = O  

I I 

1 2 3 

Klle/Kt~ 
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Provided the stable crack growth does not occur 
prior to failure, the estimated compression strength, 
o-~, can be given by letting KH = 0 in Equation 10: 

o-* = - ( K t t j K ,  c) [ (K, ,~/K,~)  + 2]o-t (15) 

This compressive strength may give a lower estimation 
because it neglects the stable crack growth prior to the 
final fracture. 

Figure 3a shows the calculated results of the nor- 
malized principal stress, o-L/o-t, at K~ = 0, and Fig. 3b 
shows the values for -o-2/o-~ at o-~ = 0, KI = 0, 
and o-t = o-,. These values increase with an increasing 
K.JKjo ratio. When this K.~/K~ ratio increases from 
0 to 3, the normalized stress, o-~/at, at Kj = 0 increases 
from 0 to 0.9, and the value -o-2/at at Kj = 0 also 
increases from 0 to 10. Since the weakest link model 
can be applied to the region ofK~ > 0, the appearance 
of the constant stress region of  cq ~-- o-~ will be 
explained in terms of  the dependence on the K,~/K~ 
ratio. This is because the stress, o-~, at K~ = 0 is lower 
than the tensile strength, o-t, and the value of -a2/o-~ 
at o-~ = a t is higher than that at K~ = 0. The value of 
o-2/o-t at o-~ = 0, which corresponds to the com- 
pression strength when stable crack extension does 
not occur prior to fracture, also increases with the 
increasing K.~/K~r ratio. 

Considering the statistical distribution of  the 
cracks, the expression for biaxial strength should be 
modified. When brittle bodies containing N cracks are 
stressed, the fracture probabilities, Pf, are formulated 
as [151 

- -  l - [ l  - g ( o - ) ]  ( 1 6 )  

and 

F(O) = ~o/2 _2 f~ f(a)  dadO (17) 
TC tc 

Here, a~, which depends on the mixed mode fracture 
criterion, is a minimum semi-crack length causing 
fracture as a function of  the inclined angle, 0. The 
value, ac, can be calculated from the criterion given by 
Equation 4, and when k = 2, it is expressed as (see 
Appendix) 

ao = [ ( - B  + D~/2)/(2A)]2ao (18) 

with A = {[(a-,/a,) - 1](K~c/K,c)} 2 sin 2 0(1 - sin-' 0), 
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B = 1 + [(O-2/O-I)  - -  1] sin 2 0, C = - 1, and D = 
8 2 - -  4 A C .  

A function, f(a), represents the probability density 
of the semi-crack length and is given by [15] 

f(a) = [c" ' /(n - 2)!]a-" exp ( - c / a )  (19) 

where c is a scaling parameter and n is the rate at 
which the density tends toward zero. The scale factor, 
c, gives a maximum probability density when the semi- 
crack length is given by c/n. This expression was 
chosen to adopt Weibull statistics to the brittle frac- 
ture [16]. When the value of N is greater than the 
lowest limit given as a function of n, Weibull analysis 
yields a good approximation, and the values ofrn and 
n are related by m = 2n - 2 where the value, m, is the 
Weibull modulus with two-parameter function [15]. 

Figure 4 presents the calculated biaxial fracture 
considering fracture probability. In this calculation 
the parameters are chosen as n = 4, c = 20~m, 
N = 100, and the biaxial stresses for Pf = 0.5 are 
plotted. The outline of  the biaxial fracture curve is 
similar to that in which the statistical effects are 
neglected. However, it is different in two points. One 
is a lowered biaxial tensile strength than the uniaxial 
tensile strength owing to the increase in the number of 
cracks responsible for the fracture. The other is the 
smooth transition from the constant tensile stress 
region to the decreasing tensile stress region under the 
combined tension and compression stresses. 

3. D i s c u s s i o n  
Some multiaxial fracture tests under compression and 
tension for brittle materials [7, 8, 17] have shown that 
a constant tensile stress is required to cause fracture 
when the compressive stress is lower than the critical 
stress. However, the constant tensile stress regions 
under compression and tension do not appear in 
porous ceramics [23] and ductile iron [8]. In these 
materials, the tensile stress component required for 
fracture gradually decreases with an increasing com- 
pressive stress. Since this inconsistency is derived from 
the dependence on the K.c/K~c ratio, it is attributed to 
the microscopic fracture behaviour of the material. 
The frictional force between the crack walls would 
affect the criterion not only in the region of negative 
K~, but also in the region of  K~ > 0 [12]. Considering 



0"1 0 
(MPa)  

- 5 0 0 0  

(b) 
0"2 (MPa)  

1000 

-1000  

- 2 0 0 0  

- 3 0 0 0  

- 4 0 0 0  

KIIc / Klc 

- 6 0 0 0  

1000 
I 

(c) 
0"2 (MPa)  

1000 

0"1 0 
( M P a )  

- 1 0 0 0  

- 2 0 0 0  

- 3 0 0 0  

- 4 0 0 0  

--1.5 

- 5 0 0 0  

- 7 0 0 0  

/ ( le = 2 

that the frictional force resulting from the tortuosity 
of the crack extension leads to a steep slope in the 
R-curve in K~ mode fracture [18-20J, the decrease in the 
K~ value results in an increase in the contact area in 
the crack walls through the decrease in the crack open- 
ing displacement. Consequently, the friction effects 
should still be more significant in the mixed mode 
fracture of K~ and Kn. 

Provided the frictional force in the crack faces leads 
to a high KHc/K[c ratio, it should be strongly influenced 
by the microstructure of the materials and the crack 
configuration. There are three requirements for 
increasing the KIIc/KIc ratio. One is to avoid separation 
of the cracks walls by minimizing the crack-tip blunt- 
ing originated from the movement of dislocations at 
the highly stressed crack-tip field. Another is to pro- 
vide hard contact in the crack walls by producing 
rough fracture surfaces. The other is not to reduce the 
frictional forces through a dropping of the particles 
from the contacting crack walls or by plastic defor- 
mation at the contacting points. From this viewpoint, 
the increased ratio of Knc/K~c or Kmc/K[c due to the 
friction effect is found in dense ceramics with sharp 
cracks. 

Higher fracture toughness ratios than the prediction 
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Figure 4 The biaxial strength con- 
sidering fracture probabilities. 
The strength at P~-= 0.5 was 

calculated using Equations 16 to 
19 with n = 4, c = 20/lm, and 
N = I00. 

from the conventional theories neglecting friction 
effects are reported in alumina with Kmc/KEc = 2.3 [12], 
glass-ceramics with KHc/K~c = 2.8 [13], and silicon 
nitride with KHc/KIo = 1.3 [14]. However, when the 
distance between the crack walls is too wide to bring 
about mechanical interaction or the stress at the con- 
tacting points of the crack walls is easily released, the 
frictional effects are smaller. For instance, the measured 
ratio for low carbon steel is reported to be K~jo/Kj~ = 
0.7 [21]. This is within the range of the ratio predicted 
by the conventional theories because the plastic defor- 
mation and the thick slot introduced for measurement 
reduce the frictional force. 

When the major stress is compressive in the com- 
bined stress state of compression and tension, it is 
extremely difficult to determine the close relationship 
between the Kuc/K~c ratio and the fracture strength 
ratio of compression to tension, ac/C~t. This is because 
the weakest link model is difficult to apply when the 
final fracture occurs after considerable crack exten- 
sion. However, the first step in brittle fracture is crack 
extension from a pre-existing crack even under the 
compressive stress state. As a result, the weakest link 
model may provide the lowest estimation for the com- 
pression strength. 
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Although these effects should be incorporated, 
Equation 14 suggests that the compression strength, 
a~, relative to a t originates from the ratio of  Kuo/Kjc. 
For instance, dense alumina with a 2.3% porosity, 
which is expected to have a high Kn~/K~ ratio, has a 
high ratio ofo.~/o.~ = - 7 [22]. Furthermore,  materials 
expected to have a low K.~/Kj~ ratio have a low com- 
pression strength relative to the tensile strength: 
graphite with a 21% porosity has a ratio of  o.c/o.t = 
- 2 . 3  [22], and porous ceramic plate has a ratio of  
0.~/0., = - 4 . 2  [23]. 

It  is obvious that considerable work remains to be 
done in the area related to the mixed mode fracture 
criterion and multiaxial fracture. Though this paper 
does not explain all the experimental results obtained 
by many authors, the frictional force between the 
crack walls is believed to play a substantial role in 
brittle fracture. 

4. Conclusion 
The multiaxial strength of a brittle solid was calcu- 
lated from the mixed mode fracture criterion. The 
expression for the criterion chosen to exhibit capa- 
bilities for the various theories and the experiments is 
given by 

K,/K,c + (Kn/Kuc)  k -- 1. 

This expression includes the parameters  of  K~o, Knc 
and k. Calculation for the case of  k = 2 indicates 
that: 

1. The region for the positive K~ is obtained as 

0.1 > o . t ( K n c / K l c ) 2 { [ ( K l c / K i k )  2 4- 1 / 4 ]  1/2 - 1/2}, 

and 

0"2 > -a , (K, ,o /K,c)2{[(K,o /Kno)  2 + 1/41 '/2 + 1/2}; 

2. the region for the constant tensile stress com- 
ponent  at the fracture (o.t = 0.~) appears when 
0.2 > 0.~ [1 -(Kll~/Kl~) 2] even in the biaxial stress 
states of  tension and compression. 

In the region of negative K~, it is difficult to predict 
the fracture strength because of the crack extension 
prior to the fracture. However, the estimated com- 
pressive strength from the weakest link model assump- 
tion is given by 0.* = -(Knc/Kk)[(Kn~/Kk) + 2]o.t, 
which suggests that the ratio of the compressive 
strength to the tensile strength increases with the 
increasing Ku~/K~ ratio. Assuming the friction effect 
between the crack walls occurs, dense ceramics are 
expected to have a high Kn~/K~ ratio and a high com- 
pression strength. 

Appendix 
The value of ac for the criterion of Equation 4 can be 
obtained as follows. The normal stress, O'N, and the 
shear stress, r, for the inclined crack, having an 
inclined angle of  0 to the principal stress are given by 

o- N = cq cos 2 0 + o-~ sin 2 0 (Ala) 

and 

- }(al - 0.2) sin2 0 (Alb)  

respectively. The stress intensity factors for K~ and Ku 

1 330 

are represented by 

K I = YO.N al/2 (A2a) 

and 

Kli = Y'ra I/2 (A2b) 

Substituting Equations A1 and A2 into Equation 4 
with k = 2, we obtain 

{[(0.2/0.,) - 1]Kk/Kik}2(a/ao)  sin 2 0(1 -- sin 2 0) 

+ {1 + [(0.2/0.,) - 1] sin 20}(a/ao) 1/2 - I = 0 

(A3) 

where a0 = (K~c/Yo.~) la. Since Equation A3 is a 
quadratic equation for (a/ao) ~/2, it can be solved to 
give 

at = a 0 [ ( - B  + Dt /2 ) / (2A)]2 ,  (14) 

where A = {[(a2/o.l) - 1]K~c/K.~} 2 sin 2 0 (1 - sin 2 0), 
B = 1 + [ ( 0 " 2 / O ' 1 )  - -  1] sin 2 0, C = --1,  and D = 
B 2 - 4 A C .  
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